Blog Archive

Wednesday, May 14, 2025

Galois Connection between ann( - ) and M( - )

Let M be a module over a commutative ring R, let (sub(M),) be the lattice of submodule of M, (I(R),) be the lattice of sub module(i.e. Ideals) of R.

The following definition comes from this two module homomorphism:

RM,rrm,MIM,mim

Define

ann(M):={rR:rM=0}=mMker(rrm)

If N1N2, then ann(N1)ann(N2).

Define

M(I):={mM:Im=0}=iIker(mim)

If IJ, then M(I)M(J).

Then we cliam that ann() is the left adjoint of M().

ann(N)JNM(J)

Proof.

If NM(J), then JN=0, hence ann(N)J. If ann(N)J, then M(ann(N))M(J) and NM(ann(N)).

 

No comments:

Post a Comment

Popular Posts