Nous sommes des enfants, mais des enfants progressifs, pleins de force et de courage.
Let M be a module over a commutative ring R, let (sub(M),⊆) be the lattice of submodule of M, (I(R),⊇) be the lattice of sub module(i.e. Ideals) of R.
The following definition comes from this two module homomorphism:
Define
If N1⊆N2, then ann(N1)⊇ann(N2).
If I⊇J, then M(I)⊆M(J).
Then we cliam that ann(−) is the left adjoint of M(−).
Proof.
If N⊆M(J), then JN=0, hence ann(N)⊇J. If ann(N)⊇J, then M(ann(N))⊆M(J) and N⊆M(ann(N)). ◻
No comments:
Post a Comment