Blog Archive
-
►
2023
(76)
- ► 05/14 - 05/21 (21)
- ► 05/21 - 05/28 (4)
- ► 05/28 - 06/04 (2)
- ► 06/04 - 06/11 (1)
- ► 06/11 - 06/18 (4)
- ► 06/18 - 06/25 (3)
- ► 06/25 - 07/02 (6)
- ► 07/02 - 07/09 (3)
- ► 07/09 - 07/16 (2)
- ► 07/16 - 07/23 (1)
- ► 07/23 - 07/30 (3)
- ► 07/30 - 08/06 (1)
- ► 08/27 - 09/03 (1)
- ► 09/10 - 09/17 (2)
- ► 09/17 - 09/24 (1)
- ► 09/24 - 10/01 (1)
- ► 10/01 - 10/08 (3)
- ► 10/08 - 10/15 (4)
- ► 10/15 - 10/22 (1)
- ► 10/22 - 10/29 (1)
- ► 10/29 - 11/05 (2)
- ► 11/05 - 11/12 (3)
- ► 11/12 - 11/19 (1)
- ► 11/19 - 11/26 (3)
- ► 11/26 - 12/03 (1)
- ► 12/10 - 12/17 (1)
-
▼
2024
(114)
- ► 01/07 - 01/14 (1)
- ► 01/14 - 01/21 (1)
- ► 01/28 - 02/04 (3)
- ► 02/04 - 02/11 (1)
- ► 02/11 - 02/18 (2)
- ► 02/18 - 02/25 (1)
- ► 02/25 - 03/03 (8)
- ► 03/03 - 03/10 (4)
- ► 03/10 - 03/17 (5)
- ► 03/17 - 03/24 (3)
- ► 03/24 - 03/31 (3)
- ► 03/31 - 04/07 (7)
- ► 04/07 - 04/14 (8)
- ► 04/14 - 04/21 (4)
- ► 04/21 - 04/28 (3)
- ► 04/28 - 05/05 (1)
- ► 05/05 - 05/12 (4)
- ► 05/12 - 05/19 (2)
- ► 05/26 - 06/02 (3)
- ► 06/02 - 06/09 (1)
- ► 06/23 - 06/30 (1)
- ► 06/30 - 07/07 (1)
- ► 07/07 - 07/14 (1)
- ► 07/14 - 07/21 (2)
- ► 07/21 - 07/28 (3)
- ▼ 07/28 - 08/04 (4)
- ► 08/25 - 09/01 (1)
- ► 09/01 - 09/08 (1)
- ► 09/08 - 09/15 (1)
- ► 09/22 - 09/29 (2)
- ► 09/29 - 10/06 (5)
- ► 10/06 - 10/13 (4)
- ► 10/13 - 10/20 (2)
- ► 10/27 - 11/03 (4)
- ► 11/03 - 11/10 (3)
- ► 11/10 - 11/17 (3)
- ► 11/17 - 11/24 (3)
- ► 11/24 - 12/01 (1)
- ► 12/01 - 12/08 (3)
- ► 12/08 - 12/15 (2)
- ► 12/15 - 12/22 (2)
-
►
2025
(60)
- ► 01/05 - 01/12 (1)
- ► 01/12 - 01/19 (1)
- ► 01/19 - 01/26 (2)
- ► 02/09 - 02/16 (2)
- ► 02/16 - 02/23 (2)
- ► 03/02 - 03/09 (1)
- ► 03/16 - 03/23 (2)
- ► 03/23 - 03/30 (3)
- ► 03/30 - 04/06 (2)
- ► 04/06 - 04/13 (2)
- ► 04/13 - 04/20 (5)
- ► 04/20 - 04/27 (2)
- ► 04/27 - 05/04 (5)
- ► 05/04 - 05/11 (3)
- ► 05/11 - 05/18 (4)
- ► 05/18 - 05/25 (2)
- ► 05/25 - 06/01 (2)
- ► 06/01 - 06/08 (3)
- ► 06/08 - 06/15 (2)
- ► 06/15 - 06/22 (2)
- ► 06/22 - 06/29 (2)
- ► 07/06 - 07/13 (3)
- ► 07/13 - 07/20 (1)
- ► 07/20 - 07/27 (3)
- ► 07/27 - 08/03 (2)
- ► 08/03 - 08/10 (1)
Saturday, August 3, 2024
Topic in Quiver

Quiver: (1) Basic definition and Path Algebra
Category of Directed Graph/Quiver
Definition. A quiver
We say an edge
Example of Quiver
Let
Every small category is a quiver as well.
Definition. Category of quivers/directed graphs,
Let
such that
Example
Let
Let
Also, we have a free functor from the category of directed graphs to
Path Algebra
Definition. A path is a sequence of vertices
Define
For each vertex, we have a trivial path
Now we can define the path algebra of a quiver.
Definition. A path algebra of a quiver
As a
The product of two paths
and naturally extends it to the whole algebra.
Denote the free vector space of
It is easy to see this is a
This is a derivation since
Also, if
It is easy to see that
Proposition. Let
Proof.
If
If
Example of Path Algebra
Let
People familiar with the fundamental group could connect this with the fundamental group of
Let
So the

Popular Posts
-
Preliminary: Galois connection Math Essays: Galois Connection in various branches (marco-yuze-zheng.blogspot.com) Math Essays: An example of...
-
Math Essays: Introduction to tensor 1: Basic property of tensor product (marco-yuze-zheng.blogspot.com) Math Essays: Introduction to tenso...
-
Galois Connection is a pretty concept in order and category theory. Consider ( A , ≤ ) , ( B , ⪯ ) ∈ O b ( P o s ) , f ∈ Hom Pos (...
-
(Decomposition Theorem). Let V be a vector space over a field K and let T be a linear operator on V . If a 1 , a 2 , . . . , a...
-
Exterior_Powers_and_Alternating_Map Abstract Exterior Powers and Alternating Map Basic properties of multiplication Determinant Inn...
-
Topos Seminar What is a Topos? Motivation of Studying Topos Theory: “The Rising Sea” — Our Nonlinear Learning Strategy Seminar S...
-
Constructions of ideal (1) Constructions of ideal (1) Lattice of ideals Product, quotient, radical Geometry of ideal (1) Geometry o...
-
https://marco-yuze-zheng.blogspot.com/2023/11/galois-connection-in-various-branches.html https://marco-yuze-zheng.blogspot.com/2024/07/eckma...
-
Definition This blog aims to introduce the fundamental concept and property of differential rings (DR). Define the integration ∫ ( ...
-
Zariski topology on Spec(R) Zariski topology on Spec(R) (1) Galois connection between ideal and variety CRing to Top The connec...