Algebraic Description of Tangent/Cotangent Space via Derivations and Ideals of Taylor Series
Blog Archive
-
►
2023
(76)
- ► 05/14 - 05/21 (21)
- ► 05/21 - 05/28 (4)
- ► 05/28 - 06/04 (2)
- ► 06/04 - 06/11 (1)
- ► 06/11 - 06/18 (4)
- ► 06/18 - 06/25 (3)
- ► 06/25 - 07/02 (6)
- ► 07/02 - 07/09 (3)
- ► 07/09 - 07/16 (2)
- ► 07/16 - 07/23 (1)
- ► 07/23 - 07/30 (3)
- ► 07/30 - 08/06 (1)
- ► 08/27 - 09/03 (1)
- ► 09/10 - 09/17 (2)
- ► 09/17 - 09/24 (1)
- ► 09/24 - 10/01 (1)
- ► 10/01 - 10/08 (3)
- ► 10/08 - 10/15 (4)
- ► 10/15 - 10/22 (1)
- ► 10/22 - 10/29 (1)
- ► 10/29 - 11/05 (2)
- ► 11/05 - 11/12 (3)
- ► 11/12 - 11/19 (1)
- ► 11/19 - 11/26 (3)
- ► 11/26 - 12/03 (1)
- ► 12/10 - 12/17 (1)
-
▼
2024
(114)
- ► 01/07 - 01/14 (1)
- ► 01/14 - 01/21 (1)
- ► 01/28 - 02/04 (3)
- ► 02/04 - 02/11 (1)
- ► 02/11 - 02/18 (2)
- ► 02/18 - 02/25 (1)
- ► 02/25 - 03/03 (8)
- ► 03/03 - 03/10 (4)
- ► 03/10 - 03/17 (5)
- ► 03/17 - 03/24 (3)
- ► 03/24 - 03/31 (3)
- ► 03/31 - 04/07 (7)
- ► 04/07 - 04/14 (8)
- ► 04/14 - 04/21 (4)
- ► 04/21 - 04/28 (3)
- ► 04/28 - 05/05 (1)
- ► 05/05 - 05/12 (4)
- ► 05/12 - 05/19 (2)
- ► 05/26 - 06/02 (3)
- ► 06/02 - 06/09 (1)
- ► 06/23 - 06/30 (1)
- ► 06/30 - 07/07 (1)
- ► 07/07 - 07/14 (1)
- ► 07/14 - 07/21 (2)
- ► 07/21 - 07/28 (3)
- ► 07/28 - 08/04 (4)
- ► 08/25 - 09/01 (1)
- ► 09/01 - 09/08 (1)
- ► 09/08 - 09/15 (1)
- ► 09/22 - 09/29 (2)
- ► 09/29 - 10/06 (5)
- ► 10/06 - 10/13 (4)
- ► 10/13 - 10/20 (2)
- ► 10/27 - 11/03 (4)
- ▼ 11/03 - 11/10 (3)
- ► 11/10 - 11/17 (3)
- ► 11/17 - 11/24 (3)
- ► 11/24 - 12/01 (1)
- ► 12/01 - 12/08 (3)
- ► 12/08 - 12/15 (2)
- ► 12/15 - 12/22 (2)
-
►
2025
(60)
- ► 01/05 - 01/12 (1)
- ► 01/12 - 01/19 (1)
- ► 01/19 - 01/26 (2)
- ► 02/09 - 02/16 (2)
- ► 02/16 - 02/23 (2)
- ► 03/02 - 03/09 (1)
- ► 03/16 - 03/23 (2)
- ► 03/23 - 03/30 (3)
- ► 03/30 - 04/06 (2)
- ► 04/06 - 04/13 (2)
- ► 04/13 - 04/20 (5)
- ► 04/20 - 04/27 (2)
- ► 04/27 - 05/04 (5)
- ► 05/04 - 05/11 (3)
- ► 05/11 - 05/18 (4)
- ► 05/18 - 05/25 (2)
- ► 05/25 - 06/01 (2)
- ► 06/01 - 06/08 (3)
- ► 06/08 - 06/15 (2)
- ► 06/15 - 06/22 (2)
- ► 06/22 - 06/29 (2)
- ► 07/06 - 07/13 (3)
- ► 07/13 - 07/20 (1)
- ► 07/20 - 07/27 (3)
- ► 07/27 - 08/03 (2)
- ► 08/03 - 08/10 (1)
Friday, November 8, 2024
Topics in Differential Geometry

Algebraic Description of Tangent/Cotangent Space via Derivations and Ideals of Taylor Series
Cotangent Space
The definition
Let
Let
Let
and consider the Taylor series
We denote the kernel of
Notice that
The inverse limit of
is
Thus
Also, let
Hence
The equation
hold since
From
Then we define the cotangent space
This consturction could be generalized to locally ringed space, for example, affine scheme. For
Cotangent space as a functor
Let
Let
And
Tangent Space
Proposition.
Proof. Let
Let
Notice that
Simplify it we get
then we have
The last term in
Conversely, let
Then
The following theorem establish the bijection
between linear map from
The naturalness leaves to readers.
Corollary.
The basis of
Easy to see that the dual basis of
Usually we denote the elements of
Tangent Space Functor
As we have seen,
Let
For a smooth function

Popular Posts
-
Preliminary: Galois connection Math Essays: Galois Connection in various branches (marco-yuze-zheng.blogspot.com) Math Essays: An example of...
-
Math Essays: Introduction to tensor 1: Basic property of tensor product (marco-yuze-zheng.blogspot.com) Math Essays: Introduction to tenso...
-
Galois Connection is a pretty concept in order and category theory. Consider ( A , ≤ ) , ( B , ⪯ ) ∈ O b ( P o s ) , f ∈ Hom Pos (...
-
(Decomposition Theorem). Let V be a vector space over a field K and let T be a linear operator on V . If a 1 , a 2 , . . . , a...
-
Exterior_Powers_and_Alternating_Map Abstract Exterior Powers and Alternating Map Basic properties of multiplication Determinant Inn...
-
Topos Seminar What is a Topos? Motivation of Studying Topos Theory: “The Rising Sea” — Our Nonlinear Learning Strategy Seminar S...
-
Constructions of ideal (1) Constructions of ideal (1) Lattice of ideals Product, quotient, radical Geometry of ideal (1) Geometry o...
-
https://marco-yuze-zheng.blogspot.com/2023/11/galois-connection-in-various-branches.html https://marco-yuze-zheng.blogspot.com/2024/07/eckma...
-
Definition This blog aims to introduce the fundamental concept and property of differential rings (DR). Define the integration ∫ ( ...
-
Zariski topology on Spec(R) Zariski topology on Spec(R) (1) Galois connection between ideal and variety CRing to Top The connec...