Nous sommes des enfants, mais des enfants progressifs, pleins de force et de courage.
For T∈Mn,n(C), if detT=0, then we say T is a singular matrix.
Sometimes, for a function 1f, if f(t)=0, we will say that t is a singular point of 1f, or f∈mt.
What is the connection between these two concept?
Notice that det(−):Mn,n(C)≅Cn×n→C is a polynomial function.
Hence consider the function h(−)=1det(−), the singular matrix is the singular point of h(−).
No comments:
Post a Comment