Blog Archive

Tuesday, January 30, 2024

Intermezzo: Arithmetic Derivative

Basic idea and definition.

Some readers might remember that the analogy between Z and C[T]. One result we already get is analogy between Qp and meromorphic function. Now we will use the analogy define the derivation of Z.

By fundamental theorem of arithmetic, we now that for any nZ{0}, n=±p1e1p2e2...pnen.

Similarly, by fundamental theorem of algebra, we now that for any p(T)C[T],p(T)=μ(Tλ1)e1,...,(Tλm)em.

The derivation of C[T] tell us that

(1)d(p(T)=dT(μ(Tλ1)e1,...,(Tλm)em)=i=1meip(T)(Tλi)

Similarly, we could define d(n) by Leibniz Law.

(2)dZ(n)=dZ(±p1e1p2e2...pnen)=ni=1neipi

However, this is not additive! For example, d(6)=6(12+13)=5. But d(6)=d(3+3)d(3)+d(3)=2.

Here is some example about counting the derivation.

(3)d(42)=42(12+13+17)=21+14+6=41

Define the constant Con(R,d) as usual, Con(R,d):={nZ,d(n)=0}={1,0,1}.

Some proerties only depend on Leibniz Law inherent from the differential ring.

For example, d(ak)=kak1d(a), hence we could extend the derivation on Q by d(ab)=d(a)bad(b)b2.

Definition. Der(Z):{d:ZZ,d(ab)=d(a)b+ad(b)}

Proposition. Der(Z) form a Z-Module.

Proof.

(d1+d2)(ab)=d1(ab)+d2(ab)=d1(a)b+ad1(b)+d2(a)b+ad2(b)=(d1+d2)(a)b+a(d1+d2)(b).

rd(ab)=rd(a)b+rad(b).

Proposition. dDer(Z),{1,0,1}Con(Z,d).

Proof.

d(1R)=d(1R1R)=d(1R)+d(1R)d(1R)=0, d(0R)=d(0R0R)=0,d(1R1R)=d(1R)=0=d(1R)(1R)+(1R)d(1R)d(1R)=0

Proposition. Let cCon(Z,d), then d(ca)=cd(a),d(ac)=d(a)c.

Proof.

d(ca)=d(c)a+cd(a)=cd(a), same for the d(ac)

Proposition. For Der(Z), the derivation is totally determined by the value of prime element.

Proof. It follows that d(pk)=kpk1d(p), hence let n=±p1e1p2e2...pnen.

(4)d(n)=d(±p1e1p2e2...pnen)=ni=1neipid(pi)

and if a function has this form, then it satisfies Leibniz Law (so no matter what value d(pi) has. )

Since ei=vpi(n), let ai=d(pi)pi.

(5)d(mn)=mnaivpi(mn)=mnaivpi(m)+mnaivpi(n)=d(m)n+md(n)

Remark. If we let d(pi)=pi, then d(n)=nvp(n)Der(Z).

 

No comments:

Post a Comment

Popular Posts