Blog Archive

Tuesday, May 30, 2023

The Mixed Derivative Theorem and the Ring Structure of Differential Operators

Mixed derivative theorem

Let E is an open subset of Rn, f:ERC2 , 1i,jn and xE, ij(f)|x=ji(f)|x

Proof.

Let a=ij(f)|x0,a=ji(f)x0

We need to prove that a=a

Because of fC2ϵ>0,δ, when |xx0|δ|,|ij(f)|x0a|ϵ

Similarly, ϵ>0,δ, when |xx0|δ|,|ji(f)|x0a|ϵ

Now, consider F:=f(δei+δej+x0)f(δej+x0)(f(δei+x0)f(x0))

According to FTC, F=0δxif(x0+δej+xiei)xif(x0+xiei)dxi

According to the Mean value theorem, xi,0xjδ,xif(x0+δej+xiei)xif(x0+xiei)=δxjxif(x0+xiei+xjej)

Observe that xi,xjδ

Thus |xif(x0+δej+xiei)xif(x0+xiei)δa|δϵ

Therefore 0δ|xif(x0+δej+xiei)xif(x0+xiei)δa|dxi=|Fδ2a|δ2ϵ

And change the order of i,j, we have |Fδ2a|δ2ϵ

According to triangle inequality, |δ2aF+Fδ2a||Fδ2a|+|Fδ2a|2δ2ϵ

Thus |aa|2ϵ

Then we can generalize it to f:ERm

And consider C:ERnR

Observe that R[1,2,...,n]R[x1,x2,...,xn]

No comments:

Post a Comment

Popular Posts